Glucose deprivation increases mRNA stability of vascular endothelial growth factor through activation of AMP-activated protein kinase in DU145 prostate carcinoma.

نویسندگان

  • Hee Yun
  • Minyoung Lee
  • Sung-Soo Kim
  • Joohun Ha
چکیده

The induction of proangiogenic cytokines such as vascular endothelial growth factor (VEGF) is a critical feature of tumor angiogenesis. In the present study, we examined the mechanisms of VEGF gene expression induced by glucose deprivation in cancer cells, a role of AMP-activated protein kinase (AMPK) in the process, and the signal transduction pathway. AMPK functions as an energy sensor to provide metabolic adaptation under ATP-depleting conditions such as hypoxia and nutritional deprivation. Here, we show that glucose deprivation leads to a significant increase in the mRNA level of VEGF, GLUT1, and PFKFB3 genes in several cancer cells via a hypoxia-inducible factor-1-independent mechanism, and we demonstrate an essential role of AMPK in these gene expressions. Our data suggest that VEGF mRNA induction by glucose deprivation is due to an increase in mRNA stability, and the AMPK activity is necessary and sufficient to confer the stability to VEGF mRNA. We further show that reactive oxygen species is involved in glucose deprivation-induced AMPK activity in DU145 human prostate carcinomas, and c-Jun amino-terminal kinase acts as an upstream component in AMPK activation cascades under these conditions. LKB1, which was recently identified as a direct upstream kinase of AMPK, was not detected in DU145 cells. In conclusion, our results demonstrate a novel and major role of AMPK in the post-transcriptional regulation of VEGF, further implying its potential role in tumor angiogenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maslinic acid inhibits the metastatic capacity of DU145 human prostate cancer cells: possible mediation via hypoxia-inducible factor-1α signalling.

Maslinic acid is found in various natural sources, most notably in pomace olive oil, and exerts pro-apoptotic activities in various cancer cells in vitro. In the present study, DU145 human prostate cancer cells were cultured with 0-25 μm-maslinic acid to examine the effects of maslinic acid on the metastatic capacity of prostate cancer cells. Maslinic acid significantly (P <0.05) inhibited the ...

متن کامل

AMP kinase signaling determines whether c-Jun N-terminal kinase promotes survival or apoptosis during glucose deprivation.

As solid tumors outgrow the surrounding vasculature, they encounter microenvironments with a limited supply of nutrients. Therefore, in order to survive, tumor cells need to adapt to glucose-deprived environments. In the present study, we examined the signaling pathways that lead to cancer cell survival in response to glucose deprivation. We primarily focused on the roles of adenosine monophosp...

متن کامل

Anti-angiogenic Effects of Metformin, an AMPK Activator, on Human Umbilical Vein Endothelial Cells and on Granulation Tissue in Rat

Objective(s)Metformin is well known for activation of AMP-activated protein kinase (AMPK). AMPK activation inhibits mammalian target of rapamycin (mTOR) as a key signaling process in cell proliferation. Recent epidemiological studies demonstrate that metformin lowers the risk for several types of cancer in diabetic patients. Concerning the critical role of angiogenesis in the incidence and prog...

متن کامل

Role of peroxisome proliferator-activated receptor alpha and gamma in antiangiogenic effect of pomegranate peel extract

Objective(s): Herbal medicines are promising cancer preventive candidates. It has been shown that Punica granatum L. could inhibit angiogenesis and tumor invasion. In this study, we investigated whether the anti-angiogenic effect of pomegranate peel extract (PPE) is partly attributable to Peroxisome proliferator-activated receptors (PPARs) activation in the Human Umbilical Vein Endothelial Cell...

متن کامل

The Time Course of JNK and P38 Activation in Cerebellar Granule Neurons following Glucose Deprivation and BDNF Treatment

Low glucose condition induces neuronal cell-death via intracellular mechanisms including mitogen-activated protein kinases (MAPK) signaling pathways. It has been shown that low glucose medium decreases neuronal survival in cerebellar granule neurons (CGNs). In this study, we have examined the activation of JNK, p38kinase and ERK1/2 pathways in low glucose medium in CGNs. The CGNs were prepared ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 280 11  شماره 

صفحات  -

تاریخ انتشار 2005